Tuesday, October 08, 2013

Cell Transport System

Researchers Win Nobel for Cell Transport System




Diagram of cell, showing vesicles
This year’s Nobel Prize in medicine or physiology was—true to the often-overlooked second half of its name—awarded for discoveries in basic physiology. The 2013 prize recognizes ground-breaking research into how cells use simple bubbles of fatty molecules (known as vesicles [pdf]) to safely transport proteins and hormones from one compartment to another within cells as well as how those fatty bubbles enter and leave the cells. Three investigators will share in the 8 million Swedish Kroner ($1.25 million) prize: James E. Rothman of Yale University, Randy W. Schekman of the University of California at Berkeley, and Thomas C. Südhof at the Stanford University school of medicine.
This vesicle-transport system lies at the heart of nerve cells’ ability to communicate with each other by releasing neurotransmitters like serotonin and dopamine as well as the body’s ability to regulate its blood sugar levels using the insulin hormone. Toxins like botulin and tetanus are deadly precisely because they destroy the vesicle-transporting machinery.
Lots of textbook diagrams over the years have given the impression that cells are like water-filled balloons in which various parts—such as the information-packed nucleus and energy-producing mitochondria—just float around. In fact, the cells are highly compartmentalized—which allows the molecular pathways within the cell to occur more efficiently and in a very well-orchestrated manner. The whole process of moving the raw material—in the form of proteins or hormones—from one part of the cell to another takes place in transport bubbles. More specifically, these vesicles consist of a membrane of fatty molecules, which surrounds the proteins or hormone molecules and keeps them from being released at the wrong time or place./.../
**********************

Listen to this Podcast

No comments:

Post a Comment